There is a newer version of this guide for Ubuntu 20.04.
With Ubuntu 19.10 there is finally (experimental) ZFS setup option. And frankly, you should use it instead of the manual installation procedure. However, manual installation does offer it's advantages - especially when it comes to pool layout and naming. If manual installation is needed, there is great Root on ZFS installation guide that's part of ZFS-on-Linux project but its final ZFS layout is a bit too complicated for my taste. Here is my somewhat simplified version of the same intended for a singe disk installations.
After booting into Ubuntu desktop installation we want to get a root prompt. All further commands are going to need root credentials anyhow.
Terminalsudo -i
The very first step should be setting up a few variables - disk, pool, host name, and user name. This way we can use them going forward and avoid accidental mistakes. Just make sure to replace these values with ones appropriate for your system.
TerminalDISK=/dev/disk/by-id/ata_disk
POOL=ubuntu
HOST=desktop
USER=user
To start the fun we need debootstrap
package. With 19.10 ZFS is available in main repository so we don't need to add universe
as in the previous Ubuntu versions.
Terminalapt install --yes debootstrap
General idea of my disk setup is to maximize amount of space available for pool with the minimum of supporting partitions. If you are planning to have multiple kernels, increasing boot partition size might be a good idea. Major change as compared to my previous guide is partition numbering. While having partition layout different than partition order had its advantages, a lot of partition editing tools would simply "correct" the partition order to match layout and thus cause issues down the road.
Terminalsgdisk --zap-all $DISK
sgdisk -n1:1M:+127M -t1:EF00 -c1:EFI $DISK
sgdisk -n2:0:+512M -t2:8300 -c2:Boot $DISK
sgdisk -n3:0:0 -t3:8309 -c3:Ubuntu $DISK
sgdisk --print $DISK
Unless there is a major reason otherwise, I like to use disk encryption.
Terminalcryptsetup luksFormat -q --cipher aes-xts-plain64 --key-size 512 \
--pbkdf pbkdf2 --hash sha256 $DISK-part3
Of course, you should also then open device. I liku to use disk name as the name of mapped device, but really anything goes.
TerminalLUKSNAME=`basename $DISK`
cryptsetup luksOpen $DISK-part3 $LUKSNAME
Finally we're ready to create system ZFS pool.
Terminalzpool create -o ashift=12 -O compression=lz4 -O normalization=formD \
-O acltype=posixacl -O xattr=sa -O dnodesize=auto -O atime=off \
-O canmount=off -O mountpoint=none -R /mnt/install $POOL /dev/mapper/$LUKSNAME
zfs create -o canmount=noauto -o mountpoint=/ $POOL/root
zfs mount $POOL/root
Assuming UEFI boot, two additional partitions are needed. One for EFI and one for booting. Unlike what you get with the official guide, here I don't have ZFS pool for boot partition but a plain old ext4. I find potential fixup works better that way and there is a better boot compatibility. If you are thinking about mirroring, making it bigger and ZFS might be a good idea. For a single disk, ext4 will do.
Terminalyes | mkfs.ext4 $DISK-part2
mkdir /mnt/install/boot
mount $DISK-part2 /mnt/install/boot/
mkfs.msdos -F 32 -n EFI $DISK-part1
mkdir /mnt/install/boot/efi
mount $DISK-part1 /mnt/install/boot/efi
Bootstrapping Ubuntu on the newly created pool is next. This will take a while.
Terminaldebootstrap eoan /mnt/install/
zfs set devices=off $POOL
Our newly copied system is lacking a few files and we should make sure they exist before proceeding.
Terminalecho $HOST > /mnt/install/etc/hostname
sed "s/ubuntu/$HOST/" /etc/hosts > /mnt/install/etc/hosts
sed '/cdrom/d' /etc/apt/sources.list > /mnt/install/etc/apt/sources.list
cp /etc/netplan/*.yaml /mnt/install/etc/netplan/
If you are installing via WiFi, you might as well copy your wireless credentials:
Terminalmkdir -p /mnt/install/etc/NetworkManager/system-connections/
cp /etc/NetworkManager/system-connections/* /mnt/install/etc/NetworkManager/system-connections/
Finally we're ready to "chroot" into our new system.
Terminalmount --rbind /dev /mnt/install/dev
mount --rbind /proc /mnt/install/proc
mount --rbind /sys /mnt/install/sys
chroot /mnt/install \
/usr/bin/env DISK=$DISK POOL=$POOL USER=$USER LUKSNAME=$LUKSNAME \
bash --login
Let's not forget to setup locale and time zone.
Terminallocale-gen --purge "en_US.UTF-8"
update-locale LANG=en_US.UTF-8 LANGUAGE=en_US
dpkg-reconfigure --frontend noninteractive locales
dpkg-reconfigure tzdata
Now we're ready to onboard the latest Linux image.
Terminalapt update
apt install --yes --no-install-recommends linux-image-generic linux-headers-generic
Followed by boot environment packages.
Terminalapt install --yes zfs-initramfs cryptsetup keyutils grub-efi-amd64-signed shim-signed
Since we're dealing with encrypted data, we should auto mount it via crypttab
. If there are multiple encrypted drives or partitions, keyscript really comes in handy to open them all with the same password. As it doesn't have negative consequences, I just add it even for a single disk setup.
Terminalecho "$LUKSNAME UUID=$(blkid -s UUID -o value $DISK-part3) none \
luks,discard,initramfs,keyscript=decrypt_keyctl" >> /etc/crypttab
cat /etc/crypttab
To mount EFI and boot partitions, we need to do some fstab setup too:
Terminalecho "PARTUUID=$(blkid -s PARTUUID -o value $DISK-part2) \
/boot ext4 noatime,nofail,x-systemd.device-timeout=5s 0 1" >> /etc/fstab
echo "PARTUUID=$(blkid -s PARTUUID -o value $DISK-part1) \
/boot/efi vfat noatime,nofail,x-systemd.device-timeout=5s 0 1" >> /etc/fstab
cat /etc/fstab
Now we get grub started and update our boot environment. Due to Ubuntu 19.10 having some kernel version kerfuffle, we need to manually create initramfs image. As before, boot cryptsetup discovery errors during mkinitramfs
and update-initramfs
as OK.
TerminalKERNEL=`ls /usr/lib/modules/ | cut -d/ -f1 | sed 's/linux-image-//'`
update-initramfs -u -k $KERNEL
Grub update is what makes EFI tick.
Terminalupdate-grub
grub-install --target=x86_64-efi --efi-directory=/boot/efi --bootloader-id=Ubuntu \
--recheck --no-floppy
Finally we install out GUI environment. It'll take ages.
Terminalapt-get install --yes ubuntu-desktop samba
Short package upgrade will not hurt.
Terminalapt dist-upgrade --yes
We can omit creation of the swap dataset but I personally find a small one handy.
Terminalzfs create -V 4G -b $(getconf PAGESIZE) -o compression=off -o logbias=throughput \
-o sync=always -o primarycache=metadata -o secondarycache=none $POOL/swap
mkswap -f /dev/zvol/$POOL/swap
echo "/dev/zvol/$POOL/swap none swap defaults 0 0" >> /etc/fstab
echo RESUME=none > /etc/initramfs-tools/conf.d/resume
If one is so inclined, /home directory can get a separate dataset too.
Terminalrmdir /home
zfs create -o mountpoint=/home $POOL/home
And now we create the user.
Terminaladduser $USER
The only remaining task before restart is to assign extra groups to user and make sure its home has correct owner.
Terminalusermod -a -G adm,cdrom,dip,lpadmin,plugdev,sambashare,sudo $USER
chown -R $USER:$USER /home/$USER
As install is ready, we can exit our chroot environment.
Terminalexit
And cleanup our mount points.
Terminalumount /mnt/install/boot/efi
umount /mnt/install/boot
mount | grep -v zfs | tac | awk '/\/mnt/ {print $3}' | xargs -i{} umount -lf {}
zpool export -a
After the reboot you should be able to enjoy your installation.
Terminalreboot
PS: There are versions of this guide using the native ZFS encryption for other Ubuntu versions: 21.10 and 20.04
PPS: For LUKS-based ZFS setup, check the following posts: 20.04, 19.04, and 18.10.